

Reliable end-to-end testing for modern web apps

Last updated: 23 May 2023

© Pepgo Pty Ltd, Level 18, 333 Ann Street, Brisbane, QLD 4000, Australia

P a g e 2 | 31

Contents
About Playwright .. 5

Why Playwright? ... 5

Multiple language support .. 5

Support for all browser families ... 5

Fast and reliable execution ... 6

Powerful automation capabilities ... 6

 Playwright installation ... 7

Install Node.js and the Node Package Manager (npm) .. 7

Install Playwright (choose one of the two options) .. 7

Option 1: Automated Playwright installation ... 7

Option 2: Manual Playwright installation ... 7

Install an Integrated Development Environment (IDE) for JavaScript .. 7

 Playwright installation .. 8

Install Java ... 8

Install Maven ... 8

Playwright with Apache Maven .. 8

Install an Integrated Development Environment (IDE) for Java ... 8

 Synchronous and asynchronous test executions .. 9

 Configuration file ... 9

Reporters .. 10

Tracing ... 11

UI Mode .. 12

 Test Hooks and Fixtures .. 14

 Command line patterns ... 15

Core concepts of Playwright ... 16

Browser ... 16

Browser contexts .. 16

Pages and frames .. 16

Selectors .. 16

Inspect Selectors ... 17

Locators ... 18

Built-in locators ... 18

Playwright Inspector ... 19

Open the Playwright Inspector ... 19

P a g e 3 | 31

 and Command Line Tools .. 20

Record scripts automatically ... 20

Preserve and restore authenticated state from command line ... 20

Install browsers ... 20

Open a page with browsers and emulation options ... 21

Open Chromium: ... 21

Open WebKit: .. 21

Open emulate an Apple iPhone 13. .. 21

Open emulate colour scheme and viewport (screen) size ... 21

Open emulate geolocation, language and timezone .. 21

Take Screenshot .. 21

Generate PDF .. 21

Auto Waiting ... 22

Inputs .. 23

Text input (“fill”) ... 23

Checkboxes and radio buttons (“check” and “uncheck”) ... 23

Select options (“selectOption”) .. 23

Mouse click (“click”and “dblclick”) ... 23

Type characters (“type”) ... 23

Keys and shortcuts (“press”) ... 24

 and Assertions ... 24

Java Asssertion examples .. 24

JavaScript Assertion examples (just some of the same Assertions as in Java) 24

 and Reuse authentication states programmatically ... 25

Save the authentication state programmatically ... 25

Create a new context with the saved storage state ... 25

Emulation .. 25

Browser Flags and configuration settings (Options) ... 25

Chromium Flags .. 26

Mozilla Firefox configuration settings .. 26

 Data-Driven Tests .. 27

 Tags .. 28

Example use of tags .. 28

Filtering with grep ... 28

Command line tag filtering examples: .. 28

P a g e 4 | 31

Configuration file tag filtering example .. 28

Playwright on Microsoft .net and Azure DevOps .. 29

Playwright installation without an IDE (NUnit) ... 29

Playwright installation in Visual Studio (NUnit without SpecFlow) .. 29

Playwright installation in Visual Studio (NUnit with SpecFlow) .. 29

Additional installations for Azure DevOps .. 30

Install Browsers on Microsoft .net (in PowerShell) .. 31

Running tests on Microsoft .net ... 31

Visual Studio “.runsettings” file .. 31

Disclaimer

Some content of this document has been sourced from the official Playwright web site:

https://playwright.dev/ .

The Playwright team really did an excellent job in documenting the Playwright features and

providing useful examples.

https://playwright.dev/

P a g e 5 | 31

About Playwright
Playwright is a free open source library for browser automation developed and maintained by

Microsoft. Like Selenium, Playwright offers multiple language bindings, including Java.

The JavaScript/TypeScript version of Playwright has its own test runner, called Playwright Test. This

document describes both the JavaScript version of Playwright, and the Java library use of Playwright.

The Java library version can be used with any Java (unit) test framework, such as JUnit or TestNG.

This document also describes Playwright on the Microsoft .net platform. Playwright can be used with

any of the Microsoft .net programming languages, such as C#.

Playwright is led by the same team that originally built Puppeteer at Google. It therefore builds on

the strength of Puppeteer, particularly on browser context flexibility and network manipulation

capabilities, including handling and modifying of requests (stubbing and mocking).

Unlike Cypress, Playwright does not run inside a browser and does therefore not suffer from the

same browser security limitations as Cypress, such as cross-site scripting restrictions (for example

when using external authentication).

Why Playwright?
Playwright enables fast, reliable and capable testing and automation across all modern browsers.

Multiple language support
Comparable to Selenium, the Playwright API is available in multiple languages:

 JavaScript and TypeScript

 Python

 Java

 Microsoft .net

Support for all browser families
 Playwright runs on Chromium, Firefox and WebKit. Playwright has full API coverage for all

modern browsers, including Google Chrome and Microsoft Edge (with Chromium), Apple

Safari (with WebKit), and Mozilla Firefox. Headless execution is supported for all browsers

on all platforms.

 Cross-platform WebKit testing. With Playwright, you can test how your app behaves in Apple

Safari with WebKit builds for Windows, Linux and macOS. In other words: You can reproduce

Apple Safari on non-Apple operating systems! Tests can run locally and in Continuous

Integration.

 Tests for mobile. Use device emulation to test your responsive web apps in mobile web

browsers.

 Headless and headed. Playwright supports headless (without browser UI) and headed (with

browser UI) modes for all browsers and all platforms. Headed is great for debugging, and

headless is faster and suited for Continuous Integration and cloud executions.

P a g e 6 | 31

Fast and reliable execution
 Auto-wait API’s. Playwright interactions auto-wait for elements to be ready. This improves

reliability and simplifies test authoring.

 Timeout-free automation. Playwright receives browser signals, such as network requests,

page navigations, and page load events to eliminate the need for sleep timeouts that cause

flakiness. This is a major advantage over Selenium.

 Fast isolation with browser contexts. Reuse a single browser instance for multiple isolated

execution environments with browser contexts.

 Resilient element selectors. Playwright can rely on user-facing strings, like text content and

accessibility labels, to select elements. These strings are more resilient than selectors that

are tightly-coupled to the DOM structure.

 React and Vue selectors. Playwright has customised element selectors for the React and Vue

web frameworks. It also supports Svelte.

 All selector engines except for XPath pierce shadow DOM by default. This is a major

breakthrough advantage over Selenium and crucially important for modern web apps.

Powerful automation capabilities
 Multiple domains, pages and frames. Playwright is an out-of-process automation driver that

is not limited by the scope of in-page JavaScript execution. It can automate scenarios with

multiple pages.

 Powerful network control. Playwright introduces context-wide network interception to stub

and mock network requests.

 Modern web features. Playwright supports web components through shadow-piercing

selectors, geolocation, permissions, web workers, and other modern web API’s.

 Capabilities to cover all scenarios. Support for file downloads and uploads, out-of-process

iframes, native input events, and even dark mode.

 UI Mode. Explore, run and debug tests in UI Mode with a time travel experience complete

with watch mode. All test files are loaded into the testing sidebar where you can expand

each file and describe block to individually run, view, watch and debug each test. See a full

trace of your tests and hover back and forward over each action to see what was happening

during each step and pop out the DOM snapshot to a separate window for a better

debugging experience.

P a g e 7 | 31

 Playwright installation

Install Node.js and the Node Package Manager (npm)
Before you can install and use Playwright, you need to install Node.

Please follow an installation guide for your operating system and version.

You can check that Node has been successfully installed with this command:

node -v

When you installed Node, you also automatically installed the “npm” Command Line Interface (CLI),

which is the package manager for Node. You can check it with:

npm -v

Install Playwright (choose one of the two options)

Option 1: Automated Playwright installation
This will create a Playwright Test configuration file, optionally add examples, a GitHub Action

workflow, and a first test:

npm init playwright@latest

Option 2: Manual Playwright installation
If you want to use Playwright with the JavaScript test-runner, then you need to run the following two

commands (the second command installs the supported browsers):

npm i -D @playwright/test

npx playwright install --with-deps

Alternatively, if you just want to use the core of Playwright without the JavaScript test-runner, then

you can use this command:

npm i -D playwright

Install an Integrated Development Environment (IDE) for JavaScript
An Integrated Development Environment (IDE), such as Microsoft Visual Studio Code, is

recommended for development:

https://code.visualstudio.com/download

There is an official Microsoft Visual Studio Code extension from Microsoft called “Playwright Test for

VSCode”, which is highly recommended:

https://marketplace.visualstudio.com/items?itemName=ms-playwright.playwright

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-playwright.playwright

P a g e 8 | 31

 Playwright installation

Install Java
Java JDK version 8 (Standard Edition) or higher (Java long-term support versions are recommended)

can be installed either from Oracle

https://www.oracle.com/java/technologies/javase-downloads.html ,

or alternatively a version of the Java Open JDK, for example from:

https://openjdk.java.net/

Install Maven
The latest stable version of Apache Maven version 3 or higher can be installed from:

https://maven.apache.org/download.cgi

Playwright with Apache Maven
Playwright is distributed as a set of Apache Maven modules. The easiest way to use it is to add one

dependency to your project's “pom.xml”:

<dependency>

 <groupId>com.microsoft.playwright</groupId>

 <artifactId>playwright</artifactId>

 <version>1.32.0</version>

</dependency>

Install an Integrated Development Environment (IDE) for Java
An Integrated Development Environment (IDE), such as IntelliJ IDEA Community Edition, is

recommended for development:

https://www.jetbrains.com/idea/download/

https://www.oracle.com/java/technologies/javase-downloads.html
https://openjdk.java.net/
https://maven.apache.org/download.cgi
https://www.jetbrains.com/idea/download/

P a g e 9 | 31

 Synchronous and asynchronous test executions
One of the key differences between the JavaScript and the Java versions of Playwright is that the

JavaScript version works asynchronous, while the Java version works synchronous. This means that

by default in JavaScript, a new command will not wait for the previous command to be completed

before it starts. This can lead to errors and unexpected results.

In JavaScript, many commands must therefore be instructed to wait for their own completion before

the script can continue. The “await” keyword will make the following function wait for a Promise,

before the script can continue.

In JavaScript, it is therefore strongly encouraged to use “async” and “await”, as in this example:

const { test, expect } = require('@playwright/test');

test('basic test', async ({ page }) => {

 await page.goto('https://playwright.dev/');

 const title = page.locator('.navbar__inner .navbar__title');

 await expect(title).toHaveText('Playwright');

});

 Configuration file
A configuration file with the file name “playwright.config.js” in the root folder of the

project can be used to define the desired test execution by default. However, if you don’t use a

configuration file, you can also set the test execution (such as reporters and projects) via command

line (CLI) options.

The following example configuration runs every test in desktop Chromium, Firefox, WebKit, Apple

iOS (iPhone 13 Pro), and Google Android (Pixel 5) by creating a "project" for each browser

configuration. It also specifies two retries on Continuous Integration (CI) only.

It is also possible to set “project” dependencies, so that a particular (pre-requisite) “project” or even

a group of projects have to run before a (follow-up) “project” gets executed.

The following example uses a “baseURL” so that URL’s in tests can omit this part of the full URL and

just use the part after the “baseURL” instead (for example just “/myFolderName/myFileName”),

only take screenshots on failure, not record videos of the test executions, and only record tracing

information on the first retry (after a failure).

P a g e 10 | 31

const { devices } = require('@playwright/test');

const config = {

 /* Fail the build on CI if test.only is left in the source code */

 forbidOnly: !!process.env.CI,

 /* Retry on CI only */

 retries: process.env.CI ? 2 : 0,

 /* GitHub and HTML reporters on CI, HTML only locally */

 reporter: process.env.CI ? [['github'],['html']] : [['html',{open:'never'}]],

 use: {

 baseURL: 'https://www.mywebsite.com',

 screenshot: 'only-on-failure',

 video: 'off',

 trace: 'on-first-retry'

 },

 projects: [

 {

 name: 'Desktop Chrome',

 browserName: 'chromium',

 viewport: { width: 1280, height: 720 }

 },

 {

 name: 'Desktop Firefox',

 browserName: 'firefox',

 viewport: { width: 1280, height: 720 }

 },

 {

 name: 'Desktop Safari',

 browserName: 'webkit',

 viewport: { width: 1280, height: 720 }

 },

 {

 name: 'Apple iOS',

 use: { ...devices['iPhone 13 Pro'] },

 },

 {

 name: 'Google Android',

 use: { ...devices['Pixel 5'] },

 }

],

};

module.exports = config;

Reporters
Playwright provides multiple reporters. The example local configuration uses the HTML report using

the default folder “playwright-report” without automatically opening the report after

completion. It is also possible to use multiple reporters at the same time.

P a g e 11 | 31

Tracing
Recording videos for debugging is not recommended in Playwright. Instead of recording videos,

tracing should be used. Tracing creates a “trace.zip” file per test that contains Playwright

actions, Playwright events, DOM snapshots, screenshots, network log, and console log.

The “trace.zip” files can be viewed with the “Trace Viewer”, which is a GUI tool that is bundled

with Playwright. “trace.zip” files get stored in the “test-results” folder. They can be

viewed with:

npx playwright show-trace test-results/NameOfTest/trace.zip

The Playwright Trace Viewer is also available online at https://trace.playwright.dev . Just

drag-and-drop your “trace.zip” file to inspect its contents. In the online version, trace files are

not uploaded anywhere; it is a progressive web application that processes traces locally.

https://trace.playwright.dev/

P a g e 12 | 31

UI Mode
To open UI mode, run the following command:

npx playwright test --ui

Once you launch UI Mode you will see a list of all your test files. You can run all your tests by clicking

the triangle icon in the sidebar. You can also run a single test file, a block of tests or a single test by

hovering over the name and clicking on the triangle next to it.

Traces are shown for each test that has been run, so to see the trace, click on one of the test names.

Note that you won't see any trace results if you click on the name of the test file or the name of a

describe block.

P a g e 13 | 31

In the Actions tab you can see what locator was used for every action and how long each one took to

run. Hover over each action of your test and visually see the change in the DOM snapshot. Go back

and forward in time and click an action to inspect and debug. Use the Before and After tabs to

visually see what happened before and after the action. Next to the Actions tab you will find the

Metadata tab which will show you more information on your test such as the Browser, viewport size,

test duration and more.

As you hover over each action of your test the source code for the test is highlighted below. Click on

the source tab to see the source code for the entire test. Click on the console tab to see the console

logs for each action. Click on the log tab to see the logs for each action. Click on the network tab to

see the network logs for each action.

Pop out the DOM snapshot into its own window for a better debugging experience by clicking on the

pop out icon above the DOM snapshot (image). From there you can open the browser DevTools and

inspect the HTML, CSS, Console etc. Go back to UI Mode and click on another action and pop that

one out to easily compare the two side by side or debug each individually.

At the top of the trace you can see a timeline view of each action of your test. Hover back and forth

to see an image snapshot for each action.

Click on the pick locator button and hover over the DOM snapshot to see the locator for each

element highlighted as you hover. Click on an element to save the locator into the pick locator field.

You can then copy the locator and paste it into your test.

Next to the name of each test in the sidebar you will find an eye icon. Clicking on the icon will

activate watch mode, which will re-run the test when you make changes to it. You can watch a

number of tests at the same time be clicking the eye icon next to each one or all tests by clicking the

eye icon at the top of the sidebar. If you are using the Microsoft Visual Studio Code IDE, then you

can easily open your test by clicking on the file icon (“Open in VS Code”) next to the eye icon. This

will open your test in Microsoft Visual Studio Code right at the line of code that you clicked on.

P a g e 14 | 31

 Test Hooks and Fixtures
“test.beforeAll” and “test.afterAll” hooks are used to set up and tear down resources

shared between tests. “test.beforeEach” and “test.afterEach” hooks are used to set up

and tear down resources for each test individually.

const { test, expect } = require('@playwright/test');

test.describe('feature foo', () => {

 test.beforeEach(async ({ page }) => {

 // Go to the starting url before each test.

 await page.goto('https://playwright.dev/');

 });

 test('my test', async ({ page }) => {

 // Assertions use the expect API.

 await expect(page).toHaveURL('https://playwright.dev/');

 });

});

The argument “page” in this example code is called a “fixture” in Playwright. Here are the most

commonly used Playwright fixtures:

Fixture Type Description
page Page Isolated page for this test run
context BrowserContext Isolated context for this test run. The page fixture

belongs to this context as well.
browser Browser Browsers are shared across tests to optimize resources
browserName String The name of the browser currently running the test.

Either chromium, firefox or webkit.

P a g e 15 | 31

 Command line patterns
Run all the tests npx playwright test

Run a single test file npx playwright test tests/todo-page.spec.ts

Run a set of test files npx playwright test tests/todo-page/

tests/landing-page/

Run files that have my-spec or
my-spec-2 in the file name

npx playwright test my-spec my-spec-2

Run the test with the title npx playwright test -g "add a todo item"

Run tests in headed browsers npx playwright test --headed

Run tests on all browsers (chromium,
firefox, webkit)

npx playwright test --browser all

Run tests in a particular configuration
(project)

npx playwright test --project=firefox

Run all tests a number of times (for
example 10 times to detect flakiness)

npx playwright test --repeat-each 10

Disable parallelization by running with a
single worker

npx playwright test --workers=1

Choose a reporter npx playwright test --reporter=dot

Run in debug mode with Playwright
Inspector

npx playwright test –debug

Ask for help npx playwright test –help

P a g e 16 | 31

Core concepts of Playwright
Playwright cascades down over multiple levels. A browser is the highest level, followed by browser

context(s), followed by pages and frames, which contain elements that are accessed by selectors.

Selectors can also be repackaged as locators to make the program code easier to read and

understand.

Browser
A browser refers to an instance of Chromium, Firefox, or WebKit. Playwright scripts generally start

with launching a browser instance and end with closing the browser. Browser instances can be

launched in headless (without a GUI), or headed mode.

Browser contexts
A browser context is an isolated incognito-alike session within a browser instance. Browser contexts

are fast and cheap to create. Each test scenario should run in its own new browser context, so that

the browser state is isolated between the tests.

Browser contexts can also be used to emulate multi-page scenarios involving mobile devices,

permissions, locale and color scheme.

Pages and frames
A browser context can have multiple pages. A page refers to a single tab or a popup window within a

browser context. A page should be used to navigate to URL’s and interact with the page content.

A page can have one or more frame objects attached to it. Each page has a main frame and

page-level interactions (like clicks) are assumed to operate in the main frame.

A page can have additional frames attached with the iframe HTML tag. These frames can be

accessed for interactions inside the frame.

Selectors
Playwright can search for elements using CSS selectors, XPath selectors, HTML attributes like “id”,

“data-test-id”, and even text content.

You can explicitly specify the selector engine you are using, or let Playwright detect it.

All selector engines except for XPath pierce shadow DOM by default. First they search for the

elements in the light DOM in the iteration order, and then they search recursively inside open

shadow roots in the iteration order.

In particular, in the CSS engine, any descendant combinator or child combinator pierces an arbitrary

number of open shadow roots, including the implicit descendant combinator at the start of the

selector. Playwright does not search inside closed shadow roots or iframes.

P a g e 17 | 31

If you want to opt-out of this behaviour, then you can use the “:light” CSS extension or the

“text:light” selector engine. They do not pierce shadow roots. You don’t typically need to do

this, though.

Some selector examples (there are more available, including special selectors for the React and Vue

web frameworks):

Selector Example

Find node by text substring page.click("text=Hello");

Playwright supports a shorthand for
selecting elements using these attributes:
"id", "data-testid",
"data-test-id", "data-test"

page.click("data-test-id=foo");

CSS and XPath selector engines are

automatically detected (“xpath=” does
not have to be prefixed, if the XPath starts
with “//”)

page.click("div");

page.click("//html/body/div");

Select by attribute, with CSS selector page.click("[aria-label='Sign in']");

Selecting based on layout, with CSS
selector

page.click("input:right-

of(:text(\"Username\"))");

Pick n-th match. Note that unlike CSS's
nth-match, the provided index is 0-based.

page.click(":nth-match(:text('Buy'),
3)");

Only search light DOM, outside
WebComponent shadow DOM

page.click("css:light=div");

Inspect Selectors
During “open” or “codegen”, you can use the following API inside the developer tools console of

any browser.

Example: In Chromium, you open the Developer Tools with the “<F12>” key, and then click on

“Console” to type:

P a g e 18 | 31

Query Playwright selector, using the actual Playwright query engine:

playwright.$(selector)#

Same as “playwright.$”, but returns all matching elements:

playwright.$$(selector)#

Reveal element in the elements panel (if the browser development tools of the respective browser

supports it):

playwright.inspect(selector)#

Generates selector for the given element:

playwright.selector(element)#

Locators
Locators represent a view to the element(s) on the page. They capture the logic to retrieve elements

at any given moment. This example looks for a link with the name "Log in" to click on:

Locator locator = page.getByRole("link", { name: "Log in" });

locator.click();

The difference between a “Locator” and an “ElementHandle” is that the latter points to a

particular element, while “Locator” captures the logic of how to retrieve that element.

Locators are particularly useful when using the Page Object Model design pattern.

Locators can make scripts much easier to read and understand.

Built-in locators

These are the recommended built in locators (“getByRole” should probably the default choice):

Locator To locate
page.getByRole() explicit and implicit accessibility attributes
page.getByText() text content
page.getByLabel() a form control by associated label's text
page.getByPlaceholder() an input by placeholder
page.getByAltText() an element, usually image, by its text alternative
page.getByTitle() an element by its title attribute
page.getByTestId() an element based on its data-testid attribute (other

attributes can be configured)

P a g e 19 | 31

Playwright Inspector
There are many ways (such as the built-in browser developer tools) to debug Playwright scripts, but

the Playwright Inspector is the default recommendation for script debugging.

The Playwright Inspector shows a toolbar to step through the Playwright script for debugging:

Open the Playwright Inspector
The Playwright Inspector can easily be used in the Command Line Interface (that is also used to

record scripts).

The Playwright Inspector can also be called from within a script:

page.pause();

P a g e 20 | 31

 and Command Line Tools
The Command Line Interface (CLI) offers many great features. The following examples are for Java,

but the same Tools can also be used from JavaScript, for example to save and restore a state (as

described in the paragraph “Preserve and restore authenticated state from command line”):

npx playwright open --save-storage=auth.json www.github.com

npx playwright open --load-storage=auth.json www.github.com

Record scripts automatically
Playwright can record scripts in Java. The Command Line Interface (CLI) can be used to record user

interactions and generate Java code. This example records on the Google web site:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="codegen google.com "

Preserve and restore authenticated state from command line

Run “codegen” with “--save-storage” to save cookies and localStorage at the end after

recording. This is useful to separately record an authentication step and reuse it later. In this

example, “auth.json” will contain the stored state:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="codegen --save-storage=auth.json"

Run with “--load-storage” to restore a previously stored state. This way, all cookies and

localStorage will be restored, bringing most web apps to the authenticated state.

Example of opening with restored state:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="open --load-storage=auth.json my.web.app"

Example of recording with restored state.

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="codegen --load-storage=auth.json my.web.app"

Install browsers
Install all supported browsers:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="install"

P a g e 21 | 31

Open a page with browsers and emulation options

Open Chromium:
mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="open google.com"

Open WebKit:
mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="wk google.com"

Open emulate an Apple iPhone 13.
mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs='open --device="iPhone 13" google.com'

Open emulate colour scheme and viewport (screen) size
mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="open --viewport-size=800,600 --color-scheme=dark twitter.com"

Open emulate geolocation, language and timezone
mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs='open --timezone="Europe/Rome"

--geolocation="41.890221,12.492348" --lang="it-IT" maps.google.com'

Take Screenshot
Wait 3 seconds before capturing a screenshot after page loads (“load” event fires):

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs='screenshot --device="iPhone 13" --color-scheme=dark --wait-for-

timeout=3000 twitter.com twitter-iphone.png'

Capture a full page screenshot:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs='screenshot --full-page google.com google-full.png'

Generate PDF
PDF generation only works in headless Chromium:

mvn

exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.ar

gs="pdf https://google.com google.pdf"

P a g e 22 | 31

Auto Waiting
Playwright automatically performs these actionability checks:

Action Attached Visible Stable
Receives
Events Enabled Editable

check Yes Yes Yes Yes Yes -

click Yes Yes Yes Yes Yes -

dblclick Yes Yes Yes Yes Yes -

Tap Yes Yes Yes Yes Yes -

uncheck Yes Yes Yes Yes Yes -

hover Yes Yes Yes Yes - -

scrollIntoViewIfNeeded Yes Yes Yes - - -

screenshot Yes Yes Yes - - -

fill Yes Yes - - Yes Yes

selectText Yes Yes - - - -

dispatchEvent Yes - - - - -

focus Yes - - - - -

getAttribute Yes - - - - -

innerText Yes - - - - -

innerHTML Yes - - - - -

press Yes - - - - -

setInputFiles Yes - - - - -

selectOption Yes - - - - -

textContent Yes - - - - -

type Yes - - - - -

It is possible to wait for a specific selector:

page.waitForSelector("text=My Text");

Although Auto Waiting will usually do the work, it is also possible to check programmatically:

ElementHandle.isChecked()

ElementHandle.isDisabled()

ElementHandle.isEditable()

ElementHandle.isEnabled()

ElementHandle.isHidden()

ElementHandle.isVisible()

Page.isChecked(selector[, options])

Page.isDisabled(selector[, options])

Page.isEditable(selector[, options])

P a g e 23 | 31

Page.isEnabled(selector[, options])

Page.isHidden(selector[, options])

Page.isVisible(selector[, options])

Inputs

Text input (“fill”)
This is the easiest way to fill in form fields. It focuses on the element and triggers an input event with

the entered text. It works for “<input>”, “<textarea>”, “[contenteditable]” and

“<label>” associated with an input or textarea. For example:

page.fill("text=First Name", "Peter");

Checkboxes and radio buttons (“check” and “uncheck”)
This is the easiest way to check and uncheck a checkbox or a radio button. This method can be used

with “input[type=checkbox]”, “input[type=radio]”, “[role=checkbox]” or

“label” associated with checkbox or radio button. Examples:

page.check("#agree");

page.uncheck("#agree");

Select options (“selectOption”)
Selects one or multiple options in the “<select>” element. You can specify the option value, label

or elementHandle to select. Multiple options can be selected. Examples:

page.selectOption("select#colors", "blue");

page.selectOption("select#colors", new String[] {"red", "green", "blue"});

Mouse click (“click”and “dblclick”)
page.click("button#submit");

page.dblclick("#item");

Type characters (“type”)
This method will emit all the necessary keyboard events, with all the “keydown”, “keyup”,

“keypress” events in place. You can even specify the optional delay between the key presses to

simulate real user behaviour. For example:

page.type("#area", "Hello World!");

P a g e 24 | 31

Keys and shortcuts (“press”)
This method focuses the selected element and produces a single keystroke. It accepts the logical key

names that are emitted in the “keyboardEvent.key” property of the keyboard events like:

Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape, ArrowDown,

End, Enter, Home, Insert, PageDown, PageUp, ArrowRight, ArrowUp, F1 - F12,

Digit0 - Digit9, KeyA - KeyZ, etc.

Example:

page.press("#name", "Shift+A");

 and Assertions
Playwright provides convenience API’s for common tasks, like reading the text content of an

element. These API’s can be used in your test assertions.

Java Asssertion examples
Assertion Example

Text content String content = page.textContent("nav:first-child");

assertEquals("home", content);

Inner text String text = page.innerText(".selected");

assertEquals("value", text);

Attribute value String alt = page.getAttribute("input", "alt");

assertEquals("Text", alt);

Checkbox state boolean checked = page.isChecked("input");

assertTrue(checked);

JS expression Object content = page.evalOnSelector("nav:first-child",
"e => e.textContent");

assertEquals("home", content);

Inner HTML String html = page.innerHTML("div.result");

assertEquals("<p>Result</p>", html);

Visibility boolean visible = page.isVisible("input");

assertTrue(visible);

Enabled state boolean enabled = page.isEnabled("input");

assertTrue(enabled);

JavaScript Assertion examples (just some of the same Assertions as in Java)
Assertion Example

Text content const content = await page.textContent('nav:first-child');

expect(content).toBe('home');

Attribute value const alt = await page.getAttribute('input', 'alt');

expect(alt).toBe('Text');

Checkbox state const checked = await page.isChecked('input');

expect(checked).toBeTruthy();

Visibility const visible = await page.isVisible('input');

expect(visible).toBeTruthy();

P a g e 25 | 31

 and Reuse authentication states programmatically

Save the authentication state programmatically
The authentication state (cookies and local storage) can be saved to a file and later restored.

This is a very powerful feature that can save a lot of time and effort to reuse authentication states in

apps that that require (login) authentication.

In Java:

context.storageState(new

BrowserContext.StorageStateOptions().setPath(Paths.get("auth.json")));

In JavaScript:

await context.storageState({ path: 'auth.json' });

Create a new context with the saved storage state
In Java:

BrowserContext context = browser.newContext(new

Browser.NewContextOptions().setStorageStatePath(Paths.get("auth.json")));

In JavaScript:

const context = await browser.newContext({ storageState: 'auth.json' });

Emulation
Playwright allows overriding various parameters of the device where the browser is running:

 User agent

 Viewport (viewport size, device scale factor, touch support)

 Locale & timezone

 Permissions (such as notifications and geolocation access)

 Geolocation

 Color scheme and media

Most of these parameters are configured during the browser context construction, but some of

them (such as viewport size) can be changed for individual pages.

Browser Flags and configuration settings (Options)
In Playwright, browser settings can be set with this command:

BrowserType.launch([options])

P a g e 26 | 31

Chromium Flags
Run Chromium with flags:

http://www.chromium.org/developers/how-tos/run-chromium-with-flags

List of Chromium command line switches:

http://peter.sh/experiments/chromium-command-line-switches/

List of default flags:

https://github.com/christian-fei/mega-scraper/blob/master/lib/browser/get-puppeteer-options.js

Use this command in Chrome-based browsers to see the full list of what is enabled or disabled:

chrome://flags

Mozilla Firefox configuration settings
Use this command in the Mozilla Firefox browser to see configuration settings:

about:config

A list of all Mozilla Firefox “about” pages:

about:about

http://www.chromium.org/developers/how-tos/run-chromium-with-flags
http://peter.sh/experiments/chromium-command-line-switches/
https://github.com/christian-fei/mega-scraper/blob/master/lib/browser/get-puppeteer-options.js

P a g e 27 | 31

 Data-Driven Tests
This example checks the homepages of Google, Apple, and Microsoft.

1. Create a data file “urls.json” in a folder called “data” with this content:

[

 "https://www.google.com",

 "https://www.apple.com",

 "https://www.microsoft.com"

]

2. You can now use this data to drive a Data-Driven Test:

const { test, expect } = require('@playwright/test');

const urls = require('../data/urls.json');

for (const url of urls) {

 test(`check ${url}`, async ({ page }) => {

 await page.goto(url);

 })

}

P a g e 28 | 31

 Tags
All test blocks (“describe”) and all tests inside the blocks (“test”) should be tagged.

This allows for selective execution of test blocks and/or tests with specific tags.

In Playwright, grep just filters for a matching regular expression. This means that you can filter for

any text (substring) of the test name and/or tags. Tags are therefore just a part of the test name. The

convention is to prefix tags with a “@” character.

Example use of tags
Tags can be used on test blocks (“describe”), and/or on tests (“test”), as in this example:

const { test, expect } = require('@playwright/test');

test.describe('block with a tag @regression', () => {

 test('example tag test one @firstTag @secondTag', () => {

 expect(true).toBe(true);

 });

 test('example tag test two @firstTag', () => {

 expect(true).toBe(true);

 });

});

Filtering with grep

Command line tag filtering examples:

run all blocks or tests with the tag “@regression”
$ npx playwright test --grep '@regression'

run all blocks or tests with the tag “@secondTag”
$ npx playwright test --grep '@secondTag'

run all blocks or tests except those with the tag “@secondTag”
$ npx playwright test --grep-invert '@secondTag'

run all blocks or tests with the text (substring) “test two” in the name
$ npx playwright test --grep 'test two'

Configuration file tag filtering example

You can also filter from the configuration file “playwright.config.js”, as in this example:

...
grep: [new RegExp("@secondTag")],

...

P a g e 29 | 31

Playwright on Microsoft .net and Azure DevOps
This section describes the installation steps for Playwright on the Microsoft .net platform with or

without the Behaviour-Driven Development (BDD) tool SpecFlow.

It also describes the Playwright test integration and test execution from Microsoft Azure DevOps.

Playwright installation without an IDE (NUnit)
1. Initialize the project in a new project folder:

dotnet new nunit -n <projectname>

2. Change into the newly created project folder:

cd <projectname>

3. Install NUnit package:
dotnet add package Microsoft.Playwright.NUnit

4. Build the project:
dotnet build

Playwright installation in Visual Studio (NUnit without SpecFlow)
1. Create a new NUnit Test Project (.net 6.0):

2. Install the NuGet package “FluentAssertions”, if it has not already been added during

the project creation:

3. Install the NuGet packages “Microsoft.Playwright” and “Microsoft.Playwright.NUnit”:

4. You can replace the existing “UnitTest1.cs” test with the Playwright example test from

https://playwright.dev/dotnet/docs/intro .

Playwright installation in Visual Studio (NUnit with SpecFlow)
1. Install the “SpecFlow for Visual Studio 2022” Extension:

2. Create a new SpecFlow Project (.net 6.0):

https://playwright.dev/dotnet/docs/intro

P a g e 30 | 31

3. Install the NuGet package “FluentAssertions”, if it has not already been added during

the SpecFlow project creation:

4. Install the NuGet packages “Microsoft.Playwright” and “Microsoft.Playwright.NUnit”:

5. Install the NuGet package “SpecFlow.Assist.Dynamic” (for easier data table handling):

Additional installations for Azure DevOps
1. Install the “Azure DevOps Test” Extension:

2. Configure the “Azure DevOps Test” Extension in Visual Studio:

“Tools” -> “Options…” -> “Azure DevOps Test Connector”.

Set the following 3 settings:

1. “Azure DevOps instance URL” must be the base URL of the Azure DevOps

instance you want to connect to, for example:

“https://myinstance.visualstudio.com”.

2. “Current Project name”, for example “myprojectname”.

3. “PAT Code” must be the Personal Access Token. Use the pure token itself, the user

name must not be used. For example:

“2s23b43tsjeevgec7smc6acba5lcok7afua3otegeywc2wwj2fcq”.

3. Link the test cases to Azure DevOps using the Visual Studio Test Explorer:

https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-

case?view=azure-devops

https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-test-with-test-case?view=azure-devops

P a g e 31 | 31

Install Browsers on Microsoft .net (in PowerShell)
This is only required once per system. Please note that the net version number might differ:

pwsh bin\Debug\net6.0\playwright.ps1 install --with-deps

Running tests on Microsoft .net
dotnet test -- NUnit.NumberOfTestWorkers=5

Visual Studio “.runsettings” file
A file named exactly “.runsettings” can only be auto-detected by Visual Studio, if it is stored at

the solution file level (where the “*.sln” file is stored) level.

The following is an example of a “.runsettings” file:

 Defines 5 worker processes

 Defines a URL as a parameter (similar to “baseURL”)

 Shows the browser during execution (headed mode)

<?xml version="1.0" encoding="utf-8"?>

<RunSettings>

 <NUnit>

 <NumberOfTestWorkers>5</NumberOfTestWorkers>

 </NUnit>

 <TestRunParameters>

 <Parameter name="PlaywrightHomepage" value="https://playwright.dev" />

 </TestRunParameters>

 <RunConfiguration>

 <EnvironmentVariables>

 <HEADED>1</HEADED>

 </EnvironmentVariables>

 </RunConfiguration>

</RunSettings>

Additional information:

https://playwright.dev/dotnet/docs/next/test-runners#using-the-runsettings-file

https://playwright.dev/dotnet/docs/next/test-runners#using-the-runsettings-file

