

Fast, easy and reliable testing for anything that runs in a browser

Last updated: 27 May 2023

© Pepgo Pty Ltd, Level 18, 333 Ann Street, Brisbane, QLD 4000, Australia

P a g e 2 | 54

Contents
Cypress is not Selenium .. 5

Cypress Best Practices ... 6

PageObject example ... 7

Installing Node and Cypress .. 8

Install Node and the Node Package Manager (npm) .. 8

Installing Cypress in Microsoft Windows .. 8

Upgrade Cypress to a newer version .. 8

Running Cypress interactively ... 9

Cypress folder structure .. 13

Cypress configuration files .. 13

Running Cypress from the command line or terminal .. 14

Some example execution options ... 15

Using browsers .. 15

Environment variables .. 15

Option 1: Using environment variables from “cypress.env.json” .. 15

Option 2: Using environment variables from “package.json” .. 16

Configuration Options ... 16

Configure Cypress ... 17

Retries ... 17

Writing Cypress tests .. 18

“.find()“,“.children.() “, and “.eq(n) “ methods ... 18

“.each()” method .. 19

Get the value of (HTML) properties .. 19

Individual timeout settings ... 19

Debugging commands .. 19

Running specific tests or spec files only .. 20

Skipping blocks (specs) or single tests .. 20

Interacting with Elements ... 21

.click() .. 21

.dblclick() ... 21

.rightclick() .. 21

.type() .. 21

.clear() ... 21

.check() .. 21

P a g e 3 | 54

.uncheck() .. 21

.select() for static drop-downs .. 21

.selectFile() .. 22

.scrollIntoView () ... 22

.scrollTo ().. 22

.trigger() .. 22

Overriding negative checks ... 23

Browser navigation ... 23

Assertions .. 24

Implicit and Explicit Assertions ... 24

Negative Assertions .. 24

Common Assertions .. 24

Length ... 24

Class .. 24

Value ... 24

Text Content.. 24

Visibility ... 24

Existence ... 25

State .. 25

CSS ... 25

Attribute .. 25

Multiple assertions ... 25

Hooks .. 26

Closures and conditional statements ... 27

Aliases ... 28

Table example ... 29

Stubbing, Spying, and controlling date and time (Clocks) .. 30

Use “cy.request()” instead of “cy.visit()” for API requests ... 30

Example GET method .. 30

Example POST method .. 30

Replace “cy.request()” with “cy.api()” .. 31

Intercept.. 32

Stubbing with and without using Fixtures .. 33

Spying .. 33

Clocks .. 34

Data-driven tests ... 35

P a g e 4 | 54

Reading data from a fixture file for data-driven tests .. 36

Reading data from a JSON file... 36

Reading data from a Comma-Separated Values (CSV) file ... 37

Comma Separated Values (CSV) fixture example ... 38

“Cy.visit()” configuration options.. 39

Multi-domain testing with “cy.origin()” and “cy.session()” .. 40

Using “cy.origin()” and “cy.session()” ... 40

Browser tab handling (Workaround) .. 41

Frames ... 42

XPath support ... 43

Tags ... 44

Installing the “cypress-grep” plugin .. 44

Example use of tags .. 44

Filtering with cypress-grep .. 45

Cypress-grep use examples:.. 45

Behaviour-Driven Development (BDD) ... 46

Parallel test executions ... 48

GitHub Actions parallel execution example .. 48

Jenkins integration .. 49

Docker ... 49

Reporters .. 50

Setup the “cypress-mochawesome-reporter” .. 50

Generate the HTML report using the “cypress-mochawesome-reporter”....................................... 50

Delete old test results data before creating a new report ... 51

Intelligent Code Completion in Microsoft Visual Studio Code ... 52

Option 1: Add “triple slash directives” to every program code page ... 52

Option 2: Add a configuration file .. 52

Cypress Recorder .. 53

Cypress Scenario Recorder ... 54

P a g e 5 | 54

Cypress is not Selenium
Cypress is not just another repackaging of Selenium like so many other JavaScript testing

frameworks, but it is a completely new and different approach. It uses very different technology.

Cypress tests run inside of the browser, which you can actually debug! Unlike Selenium, there are no

object serialisations or JSON wire protocol communications. You have real, native access to

everything in your application under test. This allows for direct access to the browser’s development

tools (<F12>), including all network recording and inspection options. It also allows for time travel

through a recorded session to restore the browser status to a specific time point during the test

execution. This makes debugging a lot easier than with Selenium.

Cypress is built around JavaScript and Node and supports them natively. This is unlike Selenium,

where JavaScript is just one of many possible language bindings and where using JavaScript does not

offer any advantage over any other language binding (such as Java, C#, Python, Ruby etc.). Unlike

Selenium, Cypress is built around the concept of asynchronous communication that dominates

modern web architectures like Single Page Applications (SPA’s), which are often built with JavaScript

frameworks like React or Angular. Although there are plenty of JavaScript frameworks for Selenium

(like Nightwatch.js, Webdriver.io, Protractor etc.), these frameworks are still just repackaging and

trying to work around the synchronous nature of Selenium.

Selenium has been designed in a time where web applications were mostly static with fixed page

requests and page responses (stateless web applications). Cypress is about a decade newer than

Selenium and designed around asynchronous communication (stateful web applications).

The sweet spot of Cypress is to be used as a tool to test your own JavaScript applications as you

build them. It is built for developers and Quality Assurance (QA) engineers. Cypress is particularly

suitable for fast visual low-level tests, such as Unit Tests (Cypress calls them Component Tests) and

simple Integration Tests (Cypress calls them End-to-End Tests), while Selenium is often more suitable

for complex business process based user interface tests, particularly when these tests need to run

on a variety of browsers and mobile devices.

Cypress has a much smaller community of developers, tools, and frameworks than Selenium. It will

certainly not replace Selenium any time soon, but it can and should be used where Selenium comes

to its limits with modern and interactive web applications.

 Tests execute faster in Cypress than in Selenium.

 Tests execute more reliably (less flaky) in Cypress than in Selenium.

 Cypress utilizes a single custom universal driver for all the browsers that it supports.

 Cypress comes with built-in explicit retries to search for elements in the Document Object

Model (DOM) and explicitly waits for events to happen before a test is considered to have

failed.

 Cypress allows for time travel. It takes snapshots as your tests run. In the Test Runner

application, you can simply hover over commands in the Command Log to see exactly what

happened at, before, and after each step. You can often directly inspect the elements.

 Cypress allows for easy stubbing of API calls. This can make tests more reliable, and it also

allows for tests to be implemented when the API’s are not available yet, or cannot be used

because of financial constraints, or impacts on production systems.

P a g e 6 | 54

 Screenshots are taken automatically on failure and videos of your entire test suite are

recorded when run headlessly (in Continuous Integration).

 Cypress offers a simple Cucumber/Gherkin plugin for Behaviour-Driven Development (BDD).

 Cypress currently only supports Google Chrome-family browsers (including Electron and

Chromium-based browsers like Microsoft Edge), and Mozilla Firefox. Other browsers, such

as Apple Safari might be supported in the future.

 Cypress does not support testing of native mobile apps. There is no equivalent to what

Appium does for Selenium.

 Selenium offers a much better integration with cloud testing providers like Sauce Labs and

BrowserStack.

 Cypress runs only in a single browser and only on a single browser tab, although this

document provides a workaround for the single browser tab problem.

 Cypress runs in a browser and therefore uses JavaScript only. Selenium supports a wide

range of programming languages, such as Java, Python, Ruby, C#, JavaScript, Perl, and PHP.

 In Cypress, tests are limited by browser security to only visit a single superdomain (single

origin). However, there are some workarounds for this limitation.

Cypress is free and open source. Tests can be executed using the free Cypress Test Runner

application or headlessly, as described in this document. This document only covers the free and

open source parts of Cypress.

In addition to that, Cypress also offers an optional cloud-based “Dashboard Service” for recording

and storing test results. This service offers a free tier and multiple paid-for tiers with higher numbers

of allowed users and test results recordings. The paid “Dashboard Service” helps support the work

that the Cypress teams does on the free and open source Cypress Test Runner.

Cypress Best Practices
Cypress recommends using “data-*” attributes to provide context to your selectors and insulate

them from CSS or JavaScript changes.

1. Don’t target elements based on JavaScript framework generated variable CSS attributes.

2. Don’t target elements that may change their text content.

3. Add “data-*” attributes to make it easy to target elements.

Cypress considers the use of “Page Objects” as recommended in Selenium as a no-go (anti-pattern).

It recommends testing specs in isolation (without the object sharing of “Page Objects”),

programmatically logging into your application (instead of using the user interface), and taking

control of your application’s state. This does not mean that the user interface login and account

creation / reset functionalities should not be tested using the user interface at all, but it means that

they should only be tested once, using the user interface in separate login tests. In all other test

cases, where the login state is just a precondition to the tests, the desired login state should ideally

be created programmatically, for example by using stubbed API calls. This is both faster and safer,

and it does not needlessly repeat the user interface login functionality multiple times.

P a g e 7 | 54

PageObject example
If you need to use Page Objects to centralise locators for elements, then it is recommended to build

a JavaScript Class for each page and to get the locator property values through “get…()”methods

for each locator.

1. Build the Page Object Class and export it:

class HomePage

{

 getEditBox()

 {

 return cy.get('#myeditbox')

 }

}

export default HomePage

2. To use it in your tests, first import the Page Object Class:

import HomePage from '../folderPath/HomePage'

3. Second, build an Object to use the Page Object Class:

const homePage = new HomePage()

homePage.getEditBox().type('Hello')

P a g e 8 | 54

Installing Node and Cypress

Install Node and the Node Package Manager (npm)
Before you can install and use Cypress, you need to install Node.

Please follow an installation guide for your operating system and version.

You can check that Node has been successfully installed with this command:

node -v

When you installed Node, you also automatically installed the “npm” Command Line Interface (CLI),

which is the package manager for Node. You can check the installed version with:

npm -v

Installing Cypress in Microsoft Windows
1. Change in the project folder where Cypress should get installed as part of the project:

cd /your_project_path

2. Initialise the project folder (if the folder is empty):

npm init –y

This will create a default “package.json” file that will be used to define the project.

3. Install Cypress with:

npm install --save-dev cypress

Upgrade Cypress to a newer version
The following example command upgrades Cypress to version 12.11.0:

npm install --save-dev cypress@12.11.0

P a g e 9 | 54

Running Cypress interactively
Cypress has 2 main execution commands:

 "cypress open" opens the GUI interactive mode (Test Runner application).

 "cypress run" executes in headless mode (suitable for Continuous Integration).

1. Add this to the “scripts” settings in the “package.json” file:

"scripts": {

 "cypress:open": "cypress open"

},

2. You can then start the Cypress Test Runner application with:

npm run cypress:open

The following options are available for “cypress open”:

Option Description

--browser, -b Specify a different browser to run tests in

--config, -c Specify configuration

--detached, -d Open Cypress in detached mode

--config-file, -c Specify a configuration file that will be used to run the tests.

The values declared in this file override the ones in the

“cypress.config.js” file.

--env, -e Specify environment variables

--global Run in global mode

--help, -h Output usage information

--port, -p Override default port

--project, -P Path to a specific project

After running “cypress open” for the first time, Cypress will ask you, if you would like to

create E2E (End-to-End) Tests, or Component Tests (visual Unit Tests).

P a g e 10 | 54

Select “E2E Testing” for conventional (Selenium like) business process tests:

3. Cypress informs you about configuration files that it added to your projects:

P a g e 11 | 54

4. Choose one of your locally installed browsers for your E2E Tests:

5. Click on “Create new empty spec”:

6. Accept or change the default spec file name and click on the “Create Spec” button:

P a g e 12 | 54

7. Close the newly-generated spec file dialog by clicking on the Window “X”:

8. You will now see your new test spec file in the list of E2E specs:

P a g e 13 | 54

9. Cypress runs tests in a unique Test Runner application with many interactive features that

allow you to see commands as they execute while also viewing the application under test.

Cypress folder structure
cypress/downloads Path to folder where files downloaded during a test are saved

cypress/e2e (E2E) Test cases

cypress/fixtures Test data in form of key-value pairs for the tests

cypress/support Reusable methods or customized commands, which can be utilised

by test cases directly without object creation.

“command.js” can contain re-usable code.

“e2e.js” runs before each test file. This can be leveraged for

handling pre-requisites for tests.

node_modules Project dependencies from the Nodes Package Manager (npm)

Cypress configuration files
cypress.config.js The values of the current configurations can be modified here,

which overrules the default configurations

package.json Dependencies and scripts for the projects

P a g e 14 | 54

Running Cypress from the command line or terminal
1. Add this to the “scripts” section in the “package.json” file:

"scripts": {

 "cypress:run": "cypress run"

},

2. You can now run cypress with:

npm run cypress:run

If you just want to run a single spec file, then the command is for example:

npm run cypress:run -- --spec "cypress/e2e/example.cy.js"

If you want to run all spec file in a folder, then the command is for example:

npm run cypress:run -- --spec "cypress/e2e/subfolder/**/"

Option Description

--browser, -b Specify a different browser to run tests in

--ci-build-id Specify a unique identifier for a run to enable grouping or

parallelisation

--config, -c Specify configuration

--config-file, -c Specify a configuration file that will be used to run the tests.

The values declared in this file override the ones in the

“cypress.config.js” file.

--env, -e Specify environment variables

--group Group recorded tests together under a single run

--headed Display the Electron browser instead of running headlessly

--headless Run tests without launching a browser

--help, -h Output usage information

--key, -k Specify your secret record key

--no-exit Keep Cypress Test Runner open after tests in a spec file run

--parallel Run recorded specs in parallel across multiple machines

--port,-p Override default port

--project, -P Path to a specific project

--record Whether to record the test run

--reporter, -r Specify a Mocha reporter

--reporter-options, -o Specify Mocha reporter options

--spec, -s Specify the spec files to run

P a g e 15 | 54

Some example execution options

Using browsers
Cypress currently supports Google Chrome in the varieties Chrome, Chrome Beta, Chrome Canary,

Chromium, Edge, Edge Beta, Edge Canary, Edge Dev, and Electron. Mozilla Firefox is currently

supported in the varieties Firefox, Firefox Developer Edition, and Firefox Nightly. WebKit has

experimental support only and therefore requires opt-in. Cypress does recognise installed browser

versions automatically.

The Electron browser is a version of Chromium that comes with Electron. It comes baked into

Cypress and does not need to be installed separately. By default, when running “cypress run”

from the command line or terminal, it will launch Electron headlessly. Because Electron is the default

browser, it is typically run in Continuous Integration. If you are seeing failures in Continuous

Integration, you might want to debug the tests by running them locally with the “--headed”

option.

A specific browser can be launched with:

cypress run -- --browser chrome

A browser can also be launched by specifying a path to the binary:

cypress run -- --browser /usr/bin/chromium

Note: Cypress generates its own isolated profile apart from your normal browser profile.

Environment variables
Cypress environment variables are global variables that can be used across all tests.

Cypress environment variables are dynamic name-value pairs that influence the way Cypress

executes tests. These environment variables are useful when there is a need to run the tests in

multiple environments, or when the defined values are prone to quickly changing.

In Cypress, you can define single or multiple environment variables either as strings or JSON objects.

In Cypress, there are many different options to use environment variables.

Option 1: Using environment variables from “cypress.env.json”

For this option, you need to create a new file called “cypress.env.json”. Here is some example

content:

{

 "host": "veronica.dev.local",

 "api_server": "http://localhost:8888/api/v1/"

}

P a g e 16 | 54

It can then be used like this:

Cypress.env() // {host: 'veronica.dev.local', api_server: 'http://localhost:8888/api/v1'}

Cypress.env('host') // 'veronica.dev.local'

Cypress.env('api_server') // 'http://localhost:8888/api/v1/'

Option 2: Using environment variables from “package.json”

You can also set environment variables in “package.json”.

This example defines an environmental variable called “TransferProtocol”:

"scripts": {

 "cypress:run": "cypress run -–env TransferProtocol='http'",

 "cypress:run:v2": "cypress run –-env TransferProtocol='https'"

},

It can then be used in tests like this:

cy.visit('${Cypress.env("TransferProtocol")}://www.example.com')

Scripts can then be executed with either

npm run cypress:run

or

npm run cypress:run:v2

Configuration Options
Cypress can set and override configurations using commands running on the terminal.

This example overrides the viewport settings:

"scripts": {

 "cypress:tablet-view": "cypress run --config viewportHeight=763,viewportWidth=700"

},

It can be run with:

npm run cypress:tablet-view

P a g e 17 | 54

Configure Cypress
Configuration options are set in the file “cypress.config.js”.

This example “baseURL” automatically prefixes “cy.visit()” and “cy.request()”

commands:

{

 baseUrl: "https://example.cypress.io"

}

With this setting, it is then possible to call the home page just with “cy.visit('/')”, instead of

“cy.visit('https://example.cypress.io')”.

Cypress has many more configuration options that you can use to customise its behaviour. These

include where your tests live, default timeout periods, environment variables, which reporter(s) to

use, and many more.

The default timeout periods are:

Option Default Description

defaultCommandTimeout 4000 Time, in milliseconds, to wait until most DOM based commands are

considered timed out

execTimeout 60000 Time, in milliseconds, to wait for a system command to finish executing

during a “cy.exec()” command

taskTimeout 60000 Time, in milliseconds, to wait for a task to finish executing during a

“cy.task()” command

pageLoadTimeout 60000 Time, in milliseconds, to wait for page transition events or

“cy.visit()”, “cy.go()”, “cy.reload()” commands to fire their

page load events. Network requests are limited by the underlying

operating system, and may still time out if this value is increased.

requestTimeout 5000 Time, in milliseconds, to wait for an XHR request to go out in a

“cy.wait()” command

responseTimeout 30000 Time, in milliseconds, to wait until a response in a “cy.request()”,

“cy.wait()”, “cy.fixture()”, “cy.getCookie()”,

“cy.getCookies()”, “cy.setCookie()”,

“cy.clearCookie()”, “cy.clearCookies()”, and

“cy.screenshot()” commands

Retries
A powerful configuration, particularly for unstable tests, is retries. The retries option retries the test,

if it fails. At times tests fail because of network or environmental issues. In these circumstances,

retrying tests is very important, as there might not be any problem with the actual tests themselves.

The retries option is specified in the “cypress.config.js” file. The following example retires a

failed tests 3 more times when executed in run mode, and 2 more times when executed in open

mode:

retries: {

 runMode: 3,

 openMode: 2

}

P a g e 18 | 54

Writing Cypress tests
Cypress End-to-End test spec files should use the “*.cy.js” file extension and be stored in the

“cypress/e2e” folder of the project. This ensures that the test spec files will automatically be

picked up by the Test Runner application.

This example test uses the example application named “Kitchen Sink” from the “cypress.io” web site.

It does the following:

1. Calls the “Kitchen Sink” start page https://example.cypress.io .

2. Clicks on an element that contains the text “type”.

3. Verifies (=asserts) that the resulting URL includes “/commands/actions”.

4. Types “fake@email.com” into the element “.action-email” and verifies (=asserts) that the

text is correctly entered into the element.

describe('My First Test', () => {

 it('Gets, types and asserts', () => {

 cy.visit('https://example.cypress.io')

 cy.contains('type').click()

 // Should be on a new URL which includes '/commands/actions'

 cy.url().should('include', '/commands/actions')

 // Get an input, type into it and verify that the value has been updated

 cy.get('.action-email')

 .type('fake@email.com')

 .should('have.value', 'fake@email.com')

 })

})

“.find()“,“.children.() “, and “.eq(n) “ methods
In Cypress, elements are queried using the JQuery syntax. This also allows JQuery DOM traversals.

The following example demonstrates parent-child relationships. It looks for “'#main-content'”,

then inside of this element for “'.article'”, and then for the first element of

“'img[src^="/static"]'”. The “.children()” method differs from “.find()” in that

“.children()” only travels a single level down the DOM tree while “.find()” can traverse

down multiple levels to select descendant elements (grandchildren etc.) as well.

If instead of the first element of an array in the following example, the n-th element should be

selected, then the “.eq(n)” method can be used, for example “.eq(3)” to select the forth

element (as arrays are zero-based).

// Each method is equivalent to its jQuery counterpart.

cy.get('#main-content')

 .find('.article')

 .children('img[src^="/static"]')

 .first()

https://example.cypress.io/

P a g e 19 | 54

“.each()” method
The “.each()” method allows iterating through an array like structure (arrays or objects with a

length property). However, it is unsafe to chain further commands that rely on the subject after

“.each()”, which is why wrapping is required before clicking on it, as in this example:

cy.get('ul>li').each(($el, index, $list) => {

 // $el is a wrapped jQuery element

 if ($el.someMethod() === 'something') {

 // wrap this element so we can

 // use cypress commands on it

 cy.wrap($el).click()

 } else {

 // do something else

 }

})

Get the value of (HTML) properties
Cypress cannot get the value of (HTML) properties directly, but the jQuery “prop()” function can

be used for this purpose.

The following extracts and logs the value of the HTML “href” property of “'#myElement'”

cy.get('#myElement').then(function(el)

{

 const myUrl=$el.prop('href')

 cy.log(myUrl)

})

Individual timeout settings
Most commands allow individual timeout settings (the Cypress default timeout is 4 seconds):

// Give this element 10 seconds to appear

cy.get('.my-slow-selector', { timeout: 10000 })

Debugging commands
cy.pause() Stop “cy” commands from running and allow interaction with the application

under test. You can then “resume” running all commands or choose to step

through the “next” commands from the Command Log.

Unlike the “.debug” command, “cy.pause()” does not have to chained to

other commands and can be used independently.

.debug() Set a debugger and log what the previous command yields. You need to have

your Developer Tools (<F12>) open for “.debug()” to hit the breakpoint.

Example use for logging out the current subject for debugging:

cy.get('.ls-btn').click({ force: true }).debug()

P a g e 20 | 54

Running specific tests or spec files only
By default, Cypress executes all tests and specs files. If only a single test (or spec) should be

executed, then this can be achieved by adding “.only” to the test (or spec), for example:

it.only('Gets, types and asserts', () => {

 …

}

This is particularly useful during test development when a new test case gets added to the existing

test cases.

Skipping blocks (specs) or single tests
Tests that are in a whole block (spec) can be excluded from execution by skipping the whole test

block (spec) with “describe.skip(…)”.

Single tests can be excluded from execution by skipping the test with “it.skip(…)”.

P a g e 21 | 54

Interacting with Elements
These action commands can interact with elements:

.click()

cy.get('button').click() // Click on button (in the centre of the button)

cy.get('button').click('topLeft') // Click on button (in the top left corner of the button)

cy.focused().click() // Click on el with focus

cy.contains('Welcome').click() // Click on first el containing 'Welcome'

An element will be clicked in the centre by default, .but an element can also be clicked “topLeft”,

“top”, “topRight”, “left”, “right”, “bottomLeft”, “bottom”, and “bottomRight”.

.dblclick()

cy.get('button').dblclick() // Double click on button

cy.focused().dblclick() // Double click on el with focus

cy.contains('Welcome').dblclick() // Double click on first el containing 'Welcome'

.rightclick()

cy.get('button'). rightclick() // Right-click on button

cy.focused().rightclick() // Right-click on el with focus

cy.contains('Welcome').rightclick() // Right-click on first el containing 'Welcome'

.type()

cy.get('input').type('Hello, World') // Type 'Hello, World' into the 'input'

cy.get('input').type('Hello, World',{force: true}) // Type 'Hello, World' into disabled 'input'

.clear()

cy.get('[type="text"]').clear() // Clear text input

cy.get('textarea').type('Hi!').clear() // Clear textarea

cy.focused().clear() // Clear focused input/textarea

.check()

cy.get('[type="checkbox"]').check() // Check checkbox element

cy.get('[type="radio"]').first().check() // Check first radio element

cy.get('[type="radio"]').should('be.checked') // Verification

.uncheck()

cy.get('[type="checkbox"]').uncheck() // Unchecks checkbox element

cy.get('[type="radio"]').should('not.be.checked') // Verification

.select() for static drop-downs

cy.get('select').select('user-1') // Select the 'user-1' option

cy.get('select').select(['user-1','user-2']) // Select both 'user-1' and 'user-2'

P a g e 22 | 54

.selectFile()

cy.get('input[type=file]').selectFile('path/to/file.json') // Attach the file from disk

.scrollIntoView ()

cy.get('button#checkout').scrollIntoView().should('be.visible') // Scroll an element into view

.scrollTo ()

cy.scrollTo('bottom') // Scroll to the bottom of the window

Valid positions are “topLeft”, “top”, “topRight”, “left”, “center”, “right”,

“bottomLeft”, “bottom”, and “bottomRight”.

.trigger()

cy.get('a').trigger('mousedown') // Trigger mousedown event on link

The trigger command in Cypress helps trigger an event on the DOM element. X, Y positions can also

be supplied to the trigger command.

This command is useful for all mouse events, including drag and drop operations. Mouse events

include “mousedown”, “mouseup”, “mouseover”, and “mousemove”.

P a g e 23 | 54

Overriding negative checks
Cypress does a lot of internal checks and adjustments before action commands get executed.

Sometimes, a negative result from these checks will prevent the execution. In these cases, it is

possible to override the negative results by using “{force: true}”, for example:

cy.get('button').click({force: true})

Using “{force: true}” is often required for actions on inaccessible elements.

Browser navigation
Going back to the previous page is possible by passing “-1” or “'back'” to the “go” method, for

example:

cy.go(-1)

cy.go('back')

Similarly, going forward to the next page is accomplished by passing “1” or “'forward'” to the

“go” method:

cy.go(1)

cy.go('forward')

Cypress also provides a method called “reload” for refreshing or reloading the page:

cy.reload()

P a g e 24 | 54

Assertions

Implicit and Explicit Assertions
An Implicit Assertion is an assertion that applies to the object provided by the parent chained

command. This category of assertions generally includes commands such as “.should()” and

“.and()”. As these commands don’t stand independently and always depend on the previously

chained parent command, they automatically inherit and act on the object yielded by the previous

command.

When there is a need to pass an explicit object for the assertion, it falls under the category of Explicit

Assertion. This category of assertions contains commands such as “expect()” and “assert()”.

Negative Assertions
By adding “.should('not.exist')” to any DOM command, Cypress will reverse its default

assertion and automatically wait until the element does not exist.

Common Assertions

Length

// retry until finding 3 matching <li.selected>

cy.get('li.selected').should('have.length', 3)

Class

// retry until this input does not have class disabled

cy.get('form').find('input').should('not.have.class', 'disabled')

Value

// retry until this textarea has the correct value

cy.get('textarea').should('have.value', 'foo bar baz')

Text Content

// partial text match for non-input HTML element

cy.get('#text-example').should('contain', 'welcome to')

// retry until this span does not contain 'click me'

cy.get('a').parent('span.help').should('not.contain', 'click me')

Visibility

// retry until this button is visible

cy.get('button').should('be.visible')

P a g e 25 | 54

Existence

// retry until loading spinner no longer exists

cy.get('#loading').should('not.exist')

State

// retry until our radio is checked

cy.get(':radio').should('be.checked')

CSS

// checks if the web element has a certain CSS property

cy.get('#txt-fld').should('have.css', 'display', 'block')

Attribute

// checks if the web element has an attribute "minlength" with a value of "2"

cy.get('#txt-fld').should('have.attr', 'minlength', '2')

Multiple assertions
Multiple assertions can be chained by using multiple “.should()”. Alternatively, a second (or

more) assertion can also be written as “.and()”, which is exactly the same as “.should()”, but

makes tests better human readable.

P a g e 26 | 54

Hooks
Cypress provides hooks (borrowed from the underlying Mocha framework).

Hooks are helpful to set conditions that you want to run before a set of tests or before each test.

They’re also helpful to clean up conditions after a set of tests or after each test.

before(() => {

 // runs once before all tests in the block

})

after(() =>{

 // runs once after all tests in the block

})

beforeEach(() => {

 // runs before each test in the block

})

afterEach(() => {

 // runs after each test in the block

})

P a g e 27 | 54

Closures and conditional statements
Cypress handles Promises automatically when chaining Cypress commands and assertions. This

means that it chains commands with an automatically generated internal logic that is similar to using

“.then()”, but without the need handle the Promise manually with a function.

If you chain Cypress commands and something else, for example a jQuery function like “text()” or

a JavaScript command, then you need to handle the Promise of the previous Cypress command

manually by using “.then()”.

To access what each Cypress command yields use “.then()”:

cy.get('button').then(($btn) => {

 // $btn is the object that the previous command yielded

})

This is a full example of using “.then”:

cy.get('button').then(($btn) => {

 // store the button's text

 const txt = $btn.text()

 // submit a form

 cy.get('form').submit()

 // compare the two buttons' text

 // and make sure they are different

 cy.get('button').should(($btn2) => {

 expect($btn2.text()).not.to.eq(txt)

 })

})

Closures can also be used for conditional testing, for example:

// this only works if there's 100% guarantee

// body has fully rendered without any pending changes

// to its state

cy.get('body').then(($body) => {

 // synchronously ask for the body's text

 // and do something based on whether it includes

 // another string

 if ($body.text().includes('some string')) {

 // yup found it

 cy.get(…).should(…)

 } else {

 // nope not here

 cy.get(…).should(…)

 }

})

P a g e 28 | 54

Aliases
Aliases are a way to prevent the usage of “.then()” functions in tests.

Aliases are often used to share objects between hooks and tests. Another great use of aliasing for

sharing contexts is with Cypress fixtures.

Aliases allow sharing and reusing of objects. To alias something you’d like to share, you use the

“.as()” command.

Cypress aliases can be accessed in two ways:

1. The “this” keyword before the alias is used for (direct) synchronous access.

2. Using the “@” character before the alias is used for asynchronous access (execute and

continue without waiting for the response).

beforeEach(() => {

 // alias the $btn.text() as 'text'

 cy.get('button').invoke('text').as('text')

})

it('has access to text', () => {

 this.text // is now available

})

Aliases have other special characteristics when being used with DOM elements. After you alias DOM

elements, you can then later access them for reuse.

// alias all of the tr's found in the table as 'rows'

cy.get('table').find('tr').as('rows')

Internally, Cypress has made a reference to the “<tr>” collection returned as the alias “rows”. To

reference these same “rows” later, you can use the “cy.get()” command.

// Cypress returns the reference to the <tr>'s

// which allows us to continue to chain commands

// finding the 1st row.

cy.get('@rows').first().click()

Because of using the “@” character in “cy.get()”, instead of querying the DOM for elements,

“cy.get()” looks for an existing alias called “rows” and returns the reference (if it finds it).

P a g e 29 | 54

Table example
The following example uses this example Table:

Country AirportName AirportCode

USA Los Angeles LAX

Germany Frankfurt FRA

Australia Sydney SYD

It loops through the values of the second column (AirportName) and checks that if the text contains

“Germany”, then the next (third) column (AirportCode) should have text containing “FRA”.

cy.get('tr td:nth-child(2)').each(($el, index, $list) => {

 const airportNameText=$el.text()

 if(airportNameText.includes('Germany'))

 {

 cy.get('tr td:nth-child(2) ').eq(index).next().then(function(airportCode)

 {

 const airportCodeText=airportCode.text()

 expect(airportCodeText).to.equal('FRA')

 })

 }

})

P a g e 30 | 54

Stubbing, Spying, and controlling date and time (Clocks)
Most web applications make background calls to (API) services. Cypress makes it easy to control the

responses of these background service calls by replacing or simulating the responses of these service

calls, even if the API’s are not built or available yet (mocking).

Cypress makes it easy to stub a server response and control the body, status, headers, or even delay

of the server response.

Use “cy.request()” instead of “cy.visit()” for API requests
The “cy.request()” command is responsible for making HTTP requests to (API) endpoints. This

command can be used to execute API requests and receive responses without the need to create or

import an external library to make and handle API requests and responses.

Because “cy.request()” does not execute inside of the browser, it is not subject to the

cross-domain restrictions of the browser. It can therefore also call other superdomains.

Example GET method

cy.request({method:'GET',

 url:'https://jsonplaceholder.cypress.io/comments'}).should((response) => {

 // the server sometimes gets an extra comment posted from another machine

 // which gets returned as 1 extra object

 expect(response.body)

 .to.have.property('length')

 .and.be.oneOf([500, 501])

 expect(response.status).to.eq(200)

 expect(response).to.have.property('headers')

 expect(response).to.have.property('duration')

 }

)

Example POST method

cy.request({method:'POST',

 url:'https://jsonplaceholder.typicode.com/posts',

 body:{title:'foo',body:'bar',userId:1}}).should((response) => {

 expect(response.status).to.eq(201)

 }

)

P a g e 31 | 54

Replace “cy.request()” with “cy.api()”
With the “@bahmutov/cy-api” Cypress plugin, you can replace the “cy.request()” command

with the “cy.api()” command. Both commands work exactly the same way. They both use the

same parameters.

When using the Cypress Test Runner, “cy.api()” shows results that are more suitable for API’s,

including the request, the response, and the response time:

To install the “@bahmutov/cy-api” Cypress plugin:

npm install --save-dev @bahmutov/cy-api

Add the following line to your Cypress support file (usually “cypress/support/index.js”):

import '@bahmutov/cy-api'

P a g e 32 | 54

Intercept
“cy.intercept()” offers flexibility and granular control over handling of the network layer. It

has out-of-the-box support for intercepting fetch calls, page loads, and resource loads in addition to

the pre-existing support for XMLHttpRequests (XHR).

“cy.intercept()” can handle “GET”, “POST”, “PUT”, “PATCH”, and “DELETE” methods.

“cy.intercept()” must be called before it can be used in tests, so that the routes are recorded

before they are called. It is therefore often part of a “before()” hook.

The following is an example that shows the “cy.intercept()” command listening for an XHR

response that it expects Cypress to make on initialization of the application. It waits for the route

response to have been called before it completes execution.

The “cy.wait()” command enables waiting for the (stubbed or genuine) response before

proceeding with the next Cypress command. This can make tests more robust. Another benefit of

using “cy.wait()” on intercepted requests is that it allows you to access the actual XHR object.

This is useful when you want to make assertions about this object. You can check the URL, Method,

Status Code, Request Body, Request Headers, Response Body, and Response Headers of the XHR

object.

Due to the asynchronous nature of JavaScript, it is strongly recommended to use “.as()” to catch

the Promise of “cy.intercept()”, then to trigger the interception, for example by using

“cy.visit()” as in the following example, and then to use “cy.wait()”to wait for the

interception to complete before continuing:

describe('Routing a request', () => {

 it('can wait for a app initialization', () => {

 cy.intercept('POST','**/j/**').as('initializeTodoApp')

 cy.visit('https://todomvc.com/examples/react/#/')

 cy.wait('@initializeTodoApp') // wait for intercept response

 })

})

“cy.wait()” returns two properties, “request” and “response”. These properties can be used to

verify the correct execution, for example:

cy.intercept('GET', '**/comments/*').as('getComment')

cy.get('form').submit()

cy.wait('@getComment').its('response.statusCode').should('be.oneOf',[200,304])

“cy.intercept()”provides the ability to override XHR responses returned by the requests made

by Cypress tests during execution. Overriding the XHR responses is called “stubbing”.

P a g e 33 | 54

Stubbing with and without using Fixtures

A fixture is a fixed set of data usually located in a file (often of type “*.json”) that is used in your

tests. The purpose of a test fixture is to ensure that there is a well-known fixed environment in

which tests are run, so that results are repeatable. Fixtures are accessed within tests by calling the

“cy.fixture()” command.

The following example uses a fixture file called “activities.json” (that is stored in the default

Cypress fixture folder “/cypress/fixtures”) to automatically stub responses for “GET”

requests that include the substring “/myapi” (for example to

“https://example.com/myapi?_limit=3”):

cy.intercept('GET', '/myapi', {fixture:'activities.json'})

If is also possible to set the stubbed response directly without using a Fixture file:

cy.intercept('GET', '/myapi', {statusCode:200,body:'All OK!'})

The official Cypress documentation has many more examples and explains the many possible

options for both the requests and the responses.

Spying
Spying is also very easy with Cypress. It is basically the same as stubbing, but without the third

argument for the payload data.

A spy gives you the ability to “spy” on a function, by letting you capture and then assert that the

function was called with the right arguments, or that the function was called a certain number of

times, or what the return value was, or what context the function was called with.

Spies are only used for verification of working elements or methods in Cypress. Spies do not modify

the behaviour of functions, they leave them perfectly intact.

Spying example:

const obj = {

 sum(a, b) {

 return a + b

 }

}

const spyRequest = cy.spy(obj,'sum')

obj.sum(1, 2) // trigger the spy

expect(spyRequest).to.be.called

expect(spyRequest.returnValues[0]).to.eq(3)

P a g e 34 | 54

Clocks
There are situations when it is useful to control your application’s date and time in order to override

its behaviour or avoid slow tests.

With “cy.clock()” you can control:

 “Date”

 “setTimeout”

 “setInterval”

P a g e 35 | 54

Data-driven tests
The easiest way for data-driven tests in Cypress is by looping through an array using

“.forEach()”, as in this example:

const names = ['foo', 'bar', 'baz']

names.forEach(name => {

 it('works for ${name}', () => {

 cy.visit('/')

 cy.contains(name)

 })

})

This example runs and reports 3 test executions (one execution for each array member).

It is of course also possible to run and report just one test execution, but with 3 different assertions

inside the test by declaring and using the array inside the test.

Using “.wrap()” for iterations is often helpful, as in this example:

const items = [

 {text: 'Buy milk', expectedLength: 1},

 {text: 'Buy eggs', expectedLength: 2},

 {text: 'Buy bread', expectedLength: 3}

]

cy.wrap(items)

 .each(todo => {

 cy.get('.my-input')

 .type(todo.text)

 .type('{enter}')

 cy.get('.my-list li')

 .should('have.length', todo.expectedLength)

})

P a g e 36 | 54

Reading data from a fixture file for data-driven tests

Reading data from a JSON file

Example fixture file “/cypress/fixtures/testdata.json”:

{

 "data": [

 {

 "city": "Tokyo",

 "country": "Japan"

 },

 {

 "city": "Shanghai",

 "country": "China"

 }

]

}

If fixture data is required in a single test case only

Example test that iterates through the data from a JSON fixture file within a single test case:

it('Read and log data from a JSON fixture file', () => {

 cy.fixture('testdata.json').then(alldata => {

 alldata.data.forEach(data => {

 cy.log(data.city)

 cy.log(data.country)

 })

 })

})

If fixture data is required in multiple test cases in the same block

If the fixture data is required in multiple test cases, then the data should be read in a “before()”

hook. Note that this requires for the data to be addressed with “.this”.

before(function() {

 // runs once before all tests in the block

 cy.fixture('testdata.json').then(function(data)

 {

 this.data = data

 })

})

In the test cases, the data needs to be accessed using “.this”

cy.log(this.data.city)

P a g e 37 | 54

Reading data from a Comma-Separated Values (CSV) file
Test data is often held and maintained in CSV files, which are easy to use for business users through

Microsoft Excel.

CSV files can easily be converted to JSON files trough Node parser packages, such as Papa Parse:

https://www.papaparse.com/ . Pease check the excellent Papa Parse documentation for parameters

and much more.

To work with Papa Parse, you have to install it with:

npm install --save-dev papaparse

For parsing from CSV to JSON, you have to add:

import {parse} from "papaparse"

Example CSV file “/cypress/fixtures/csv_example.csv”:

city,country

"Tokyo","Japan"

"Shanghai","China"

https://www.papaparse.com/

P a g e 38 | 54

Comma Separated Values (CSV) fixture example
Example test that converts a CSV fixture file to a JSON file fixture file and iterates through the JSON

data of the newly created JSON fixture file:

/// <reference types="cypress" />

import {parse} from "papaparse"

describe('Convert CSV to JSON (fixture) with Papa Parse', function () {

 let allData // "allData" is an object that contains an array called "allData.data"

 before(() => {

 // convert CSV fixture to JSON fixture

 cy.readFile('./cypress/fixtures/csv_example.csv').then(str => {

 cy.writeFile('./cypress/fixtures/csv_example.json', parse(str, {header:true}))

 })

 // read JSON fixture data

 cy.fixture('csv_example.json').as('dataJson').then(dataJson => {

 allData = dataJson

 })

 })

 it('Convert, read, and log CSV data', function () {

 // use JSON fixture data

 allData.data.forEach(data => {

 cy.log(data.city)

 cy.log(data.country)

 })

 })

})

P a g e 39 | 54

“Cy.visit()” configuration options
Option Default Description

url null The URL to visit. Behaves the same as the url argument.

Method GET The HTTP method to use in the visit. Can be GET or POST .

Body null

An optional body to send along with a POST request. If it is a string, it

will be passed along unmodified. If it is an object, it will be URL encoded

to a string and sent with a Content-Type: application/x-www-

urlencoded header.

Headers {}

An object that maps HTTP header names to values to be sent along with

the request. Note: headers will only be sent for the

initial cy.visit() request, not for any subsequent requests.

Qs null Query parameters to append to the url of the request

Log true Displays the command in the Command log

Auth null Adds Basic Authorization headers

failOnStatusCode True Whether to fail on response codes other than 2xx and 3xx

onBeforeLoad function Called before your page has loaded all of its resources.

onLoad function Called once your page has fired its load event.

retryOnStatusCodeFailure False
Whether Cypress should automatically retry status code errors under the

hood. Cypress will retry a request up to 4 times if this is set to true.

retryOnNetworkFailure True

Whether Cypress should automatically retry transient network errors

under the hood. Cypress will retry a request up to 4 times if this is set to

true.

timeout pageLoadTimeout Time to wait for cy.visit() to resolve before timing out

https://docs.cypress.io/guides/core-concepts/test-runner.html#Command-Log
https://docs.cypress.io/guides/references/configuration.html#Timeouts
https://docs.cypress.io/api/commands/visit.html#Timeouts

P a g e 40 | 54

Multi-domain testing with “cy.origin()” and “cy.session()”
The “cy.origin()” and “cy.session()” commands allow for easy switching between origins

to seamlessly test syndicated authentication, cross-site CMS workflows, and much more.

Using “cy.origin()” and “cy.session()”
In normal use, a single Cypress test may only run commands in a single origin. This is a limitation

determined by standard web security features of the browser. The “cy.origin()” command

allows tests to bypass this limitation inside a “cy.origin()” command.

The “cy.session()” command caches and restores cookies, localStorage and sessionStorage

after a successful login. The steps that the login code takes inside the “cy.origin()” command

to create the session will only be performed once when it's called the first time in any given spec file.

Subsequent calls will restore the session from cache.

The following example wraps “cy.origin()” with “cy.session()”:

Cypress.Commands.add('login', (username, password) => {

 const args = { username, password }

 // Username & password can be used as the cache key too

 cy.session(args, () => {

 cy.origin('my-auth.com', { args }, ({ username, password }) => {

 cy.visit('/login')

 cy.contains('Username').find('input').type(username)

 cy.contains('Password').find('input').type(password)

 cy.get('button').contains('Login').click()

 })

 cy.url().should('contain', '/home')

 },

 {

 validate() {

 cy.request('/api/user').its('status').should('eq', 200)

 },

 })

})

P a g e 41 | 54

Browser tab handling (Workaround)
Cypress does not have a specific command to work with browser tabs. However, there is a

workaround method in jQuery through which Cypress can handle browser tabs.

Cypress can use the jQuery method “removeAttr” to remove the attribute that asks for a new

tab. It deletes the attribute that is passed as one of the parameters to the “invoke” method. Once

the HTML “target=_blank” is removed, then the target opens in the parent window. Later on

after performing the operations on it, you can shift back to the parent URL with the

“cy.go('back')”command.

/// <reference types="cypress" />

describe('Browser tab handling example', function () {

 // test case

 it('New tab opened up through a link with a HTML target="_blank" attribute', function () {

 // url launch

 cy.visit("https://the-internet.herokuapp.com/windows")

 // delete target attribute created by the link

 cy.get('.example > a').invoke('removeAttr', 'target').click()

 // verify tab title

 cy.title().should('eq', 'New Window')

 // shift back to parent window

 cy.go('back')

 })

})

P a g e 42 | 54

Frames
To work with (i)Frames, you have to install a Cypress plugin:

npm install --save-dev cypress-iframe

For the frame implementation in Cypress, you have to add this statement:

import 'cypress-iframe'

The method “frameLoaded()“ is used to move the focus from the main page to the frame. Once

the focus is shifted, you can interact with the elements inside the frame. This is done with the

“iframe()“ method.

If you would like to use IntelliSense in Microsoft Visual Studio Code, then you should also add

“<reference types="cypress-iframe" /> “to the program code:

/// <reference types="cypress" />

/// <reference types="cypress-iframe" />

import 'cypress-iframe'

describe('Frame handling example', function () {

 // test case

 it('Switch to iFrame', function (){

 // launch URL

 cy.visit("https://jqueryui.com/draggable/")

 // frame loading

 cy.frameLoaded('.demo-frame')

 // shifting focus

 cy.iframe().find("#draggable").then(function(t){

 const frmtxt = t.text()

 // assertion to verify text

 expect(frmtxt).to.contains('Drag me around')

 cy.log(frmtxt)

 })

 })

})

P a g e 43 | 54

XPath support
Cypress supports CSS selectors by default, but XPath support can be added.

For XPath support in Cypress, you have to install a plugin:

npm install --save-dev cypress-xpath

Once the installation is done, you have to add the statement

require('cypress-xpath')

to the “cypress/support/index.js” file.

This will then enable “cy.xpath()”, for example:

cy.xpath('//ul[@class="todo-list"]//li').should('have.length',3)

P a g e 44 | 54

Tags
All test blocks (“describe”) and all tests (“it”) should be tagged.

This allows for selective execution of test blocks and/or tests with specific tags.

In addition to filtering for tags, the “cypress-grep” plugin also allows for filtering for a part

(substring) of the name.

Installing the “cypress-grep” plugin
You need to install the “cypress-grep” plugin with:

npm install --save-dev cypress-grep

Add (change) this to the “cypress.config.js” file:

{

 e2e: {

 setupNodeEvents(on, config) {

 require('cypress-grep/src/plugin')(config)

 return config

 }

 }

}

You also have to add this

const registerCypressGrep = require('cypress-grep')

registerCypressGrep()

to the “cypress/support/e2e.js” file.

Example use of tags
Tags can be used on test blocks (“describe”), and/or on tests (“it”), as in this example:

describe('block with a tag', { tags: '@regression' }, () => {

 it('example test one', { tags: ['@firstTag', '@secondTag'] }, () => {

 expect(true).to.be.true

 })

 it('example test two', { tags: '@firstTag' }, () => {

 expect(true).to.be.true

 })

})

P a g e 45 | 54

Filtering with cypress-grep
The filtering is done from command line (CLI) by environment variables.

When using the “grep” and “grepTags” filters, all of the specs are executed and then the filters

get applied. This can be very wasteful, if only a few specs contain the grep in the test titles. Thus for

a positive filter, you can pre-filter specs using the “grepFilterSpecs=true” parameter.

Cypress-grep use examples:

run only the tests with "auth user" in the title
$ npx cypress run --env grep="auth user"

run tests with "hello" or "auth user" in their titles by separating them with a ";" character
$ npx cypress run --env grep="hello;auth user"

run tests tagged @fast
$ npx cypress run --env grepTags=@fast

run only the tests tagged "@smoke" that have "login" in their titles
$ npx cypress run --env grep=login,grepTags=@smoke

only run the specs that have any tests with "user" in their titles
$ npx cypress run --env grep=user,grepFilterSpecs=true

only run the specs that have any tests tagged "@smoke"
$ npx cypress run --env grepTags=@smoke,grepFilterSpecs=true

run only tests that do not have any tags and are not inside blocks that have any tags
$ npx cypress run --env grepUntagged=true

P a g e 46 | 54

Behaviour-Driven Development (BDD)
The following recipe uses Cucumber and Gherkin in Cypress with an example Behaviour-Driven

Development (BDD) test case.

The example test case searches for “New York” on Google Search. It then checks, if the search

returns a page with the correct HTML title tag.

With the setup described in this recipe, all “Feature” files must be stored in the

“cypress/integration/features” folder, while “Step Definition” files must to be stored in

a sub-folder with the name of the feature, for example a

“cypress/integration/features/myfeature” folder for the steps of a Feature called

“myfeature”.

Please note that the file structure must be “cypress/integration/…” and not

“cypress/e2e/…”

1. Install the cypress-cucumber-preprocessor plugin:

npm install --save-dev cypress-cucumber-preprocessor

2. Modify your “cypress.config.js” file to include the following:

const { defineConfig } = require("cypress");

const cucumber = require('cypress-cucumber-preprocessor').default

module.exports = defineConfig({

 e2e: {

 setupNodeEvents(on, config) {

 on('file:preprocessor', cucumber())

 },

 specPattern: 'cypress/integration/features/*.feature'

 }

});

3. Add this to “package.json”:

"cypress-cucumber-preprocessor": {

 "nonGlobalStepDefinitions": true

},

4. Create a new folder “cypress/integration/features”.

P a g e 47 | 54

5. In the just created folder “cypress/integration/features”, generate a new file

called “GoogleSearch.feature” with this content:

Feature: Google Search

 This Feature covers Google Search tests

 Scenario: Do a successful Google Search

 Given I am on the Google Search page

 When I type New York in the Google Search field

 And I click the Google Search button

 Then I should get a page with the correct title

6. The Step Definitions must be in a sub-folder with the same name as the Feature. Therefore,

create a new folder “cypress/integration/features/GoogleSearch”.

7. In the just created folder “cypress/integration/features/GoogleSearch”,

generate a new file called “GoogleSearch.steps.js” with this content:

import { Given, When, Then } from 'cypress-cucumber-preprocessor/steps'

Given('I am on the Google Search page', () => {

 cy.visit('https://www.google.com/')

})

When('I type New York in the Google Search field', () => {

 cy.get('#APjFqb').type('New York')

})

And('I click the Google Search button', () => {

 cy.get('div[class="lJ9FBc"] input[value="Google Search"]').click()

})

Then('I should get a page with the correct title', () => {

 cy.title().should('eq', 'New York - Google Search')

})

8. You can now run the test, for example with:

npx cypress run

P a g e 48 | 54

Parallel test executions
The “cypress-split” plugin lets you automatically split the entire list of Cypress tests (specs) to run in

parallel on any Continuous Integration server (or even when running Cypress locally using Docker

containers).

Install the plugin by following the plugin README documentation and use one of the Continuous

Integration examples provided to run the tests:

https://github.com/bahmutov/cypress-split

GitHub Actions parallel execution example
If you use GitHub Actions for Continuous integration, then you can follow this example:

https://github.com/bahmutov/cypress-split-example

In GitHub Actions, the reusable workflow is the simplest way to run Cypress tests:

name: reusable

on: [push]

jobs:

 tests:

 # use the reusable workflow to check out the code, install

dependencies

 # and run the Cypress tests

 # https://github.com/bahmutov/cypress-workflows

 uses: bahmutov/cypress-workflows/.github/workflows/split.yml@v1

 with:

 n: 4

The “cypress-split” plugin even outputs its information to the GitHub Actions report:

You can Git clone an example that includes a full demonstration OpenCart shopping process from:

https://github.com/BrunoBosshard/cypress-split-example

https://github.com/bahmutov/cypress-split
https://github.com/bahmutov/cypress-split-example
https://github.com/bahmutov/cypress-workflows
mailto:bahmutov/cypress-workflows/.github/workflows/split.yml@v1
https://github.com/BrunoBosshard/cypress-split-example

P a g e 49 | 54

Jenkins integration
Cypress can run on many different Continuous Integration servers, such as Jenkins.

Cypress offers a demo web application called “Kitchen Sink” that is available online at

https://example.cypress.io/ . The program code for this demo web application is available at

https://github.com/cypress-io/cypress-example-kitchensink .

There are two demo “Jenkinsfile” for the “Kitchen Sink” application that show how to run Cypress

from Jenkins.

A basic “Jenkinsfile” example is available at https://github.com/cypress-io/cypress-example-

kitchensink/blob/master/basic/Jenkinsfile .

A more advanced “Jenkinsfile” with full parallel configuration (simultaneous execution of tests on

multiple agents/nodes) is available at https://github.com/cypress-io/cypress-example-

kitchensink/blob/master/Jenkinsfile .

Docker
Cypress offers several different pre-configured Docker images with a range of Node versions and

with and without preinstalled browsers:

https://github.com/cypress-io/cypress-docker-images

The Docker images already have the X virtual framebuffer “Xvfb” pre-installed.

If you would like to run Cypress in a Docker container viewable with a Remote Desktop (VNC) client,

then this is great starting point for building your own solution:

https://spin.atomicobject.com/2021/10/14/cypress-running-docker-container/

If you just want to use an already built Docker image viewable with a Remote Desktop (VNC) client,

then check this out:

https://github.com/piopi/cypress-desktop

https://example.cypress.io/
https://github.com/cypress-io/cypress-example-kitchensink
https://github.com/cypress-io/cypress-example-kitchensink/blob/master/basic/Jenkinsfile
https://github.com/cypress-io/cypress-example-kitchensink/blob/master/basic/Jenkinsfile
https://github.com/cypress-io/cypress-example-kitchensink/blob/master/Jenkinsfile
https://github.com/cypress-io/cypress-example-kitchensink/blob/master/Jenkinsfile
https://github.com/cypress-io/cypress-docker-images
https://spin.atomicobject.com/2021/10/14/cypress-running-docker-container/
https://github.com/piopi/cypress-desktop

P a g e 50 | 54

Reporters
Because Cypress is built on top of the Mocha framework, any reporter built for Mocha can be used

with Cypress.

There are also Cypress reporters available for the Junit format, for example:

https://npm.io/package/cypress-junit-reporter .

It is also possible to use multiple Cypress reporters at the same time. Often, users are using the

default “spec” reporter to write to the terminal, but then also generate an actual “junit” report file.

Setup the “cypress-mochawesome-reporter”
Please visit https://npm.io/package/cypress-mochawesome-reporter for details. The following steps

are distilled from these instructions.

1. Install the "cypress-mochawesome-reporter" from command line or terminal:

npm i --save-dev cypress-mochawesome-reporter

2. Add this to the "cypress.config.js" configuration file:

{

 "reporter": "cypress-mochawesome-reporter"

}

3. Add this to the “cypress/support/index.js” file:

import 'cypress-mochawesome-reporter/register'

4. Add this to the “package.json” scripts:

"scripts": {

 "cypress:report": "generate-mochawesome-report"

}

Generate the HTML report using the “cypress-mochawesome-reporter”
1. Delete any old report data as described in the next section (“Delete old test results data

before creating a new report”).

2. Run the Cypress tests, for example from command line or terminal with:

“npm run cypress:run”

https://npm.io/package/cypress-junit-reporter
https://npm.io/package/cypress-mochawesome-reporter

P a g e 51 | 54

3. Generate the HTML report from command line or terminal with:

npm run cypress:report

4. You can now find the generated HTML report as “index.html” in the

“cypress/reports/html” folder.

Delete old test results data before creating a new report
Old test results data will not automatically get deleted and new test results data will just be added to

the existing test results data. It is therefore usually required to delete old test results data before

any new round of a test execution and reporting.

There are multiple solutions to automate this. One way is to use an operating system command

(such as “rm …”) or batch script to delete all files in the “cypress/results/json” folder.

Another solution is to use a Node module such as “rimraf”, for example:

1. Install “rimraf” with:

npm install --save-dev rimraf

2. Add this to add to the “package.json” scripts:

"scripts": {

 "cypress:deleteResults": "rimraf .**\\cypress\\results\\json"

},

3. You can now run this script from command line or terminal with:

npm run cypress:deleteResults

P a g e 52 | 54

Intelligent Code Completion in Microsoft Visual Studio Code
There are two ways to get intelligent code completion (“IntelliSense”) in Microsoft Visual Studio.

Option 1: Add “triple slash directives” to every program code page
You can add the following triple slash directive on the top of every page where you want to use

intelligent code completion:

/// <reference types="Cypress" />

Option 2: Add a configuration file
If you automatically want intelligent code completion on all program code pages, then you can add a

“jsconfig.json” page to the root of your project (where the other configuration files reside).

{

 "compilerOptions": {

 "types": ["cypress"],

 "resolveJsonModule": true

 }

}

P a g e 53 | 54

Cypress Recorder
The Cypress Recorder is a Google Chrome extension that records user interaction within a web

application and generates Cypress scripts to allow the developer to replicate that particular session.

https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab

Features of the Cypress Recorder:

 Record clicks, typing, submits, and navigation in the browser.

 See the scripts render live as they are generated.

 Delete accidental actions.

 Reorder actions as necessary.

 Pause and resume recording within a single session.

 Record navigation within a domain.

 Copy the generated code to your clipboard.

https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab

P a g e 54 | 54

Cypress Scenario Recorder
The Cypress Scenario Recorder is another Google Chrome extension that records browser

interactions and generates Cypress scripts. It is based on the Puppeteer recorder, which is no longer

maintained.

https://chrome.google.com/webstore/detail/cypress-scenario-

recorder/fmpgoobcionmfneadjapdabmjfkmfekb

https://chrome.google.com/webstore/detail/cypress-scenario-recorder/fmpgoobcionmfneadjapdabmjfkmfekb
https://chrome.google.com/webstore/detail/cypress-scenario-recorder/fmpgoobcionmfneadjapdabmjfkmfekb

